A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion
نویسندگان
چکیده
We present a computational framework for estimating the uncertainty in the numerical solution of linearized infinite-dimensional statistical inverse problems. We adopt the Bayesian inference formulation: given observational data and their uncertainty, the governing forward problem and its uncertainty, and a prior probability distribution describing uncertainty in the parameter field, find the posterior probability distribution over the parameter field. The prior must be chosen appropriately in order to guarantee well-posedness of the infinite-dimensional inverse problem and facilitate computation of the posterior. Furthermore, straightforward discretizations may not lead to convergent approximations of the infinite-dimensional problem. And finally, solution of the discretized inverse problem via explicit construction of the covariance matrix is prohibitive due to the need to solve the forward problem as many times as there are parameters. Our computational framework builds on the infinite-dimensional formulation proposed by Stuart [Acta Numer., 19 (2010), pp. 451–559] and incorporates a number of components aimed at ensuring a convergent discretization of the underlying infinite-dimensional inverse problem. The framework additionally incorporates algorithms for manipulating the prior, constructing a low rank approximation of the data-informed component of the posterior covariance operator, and exploring the posterior that together ensure scalability of the entire framework to very high parameter dimensions. We demonstrate this computational framework on the Bayesian solution of an inverse problem in three-dimensional global seismic wave propagation with hundreds of thousands of parameters.
منابع مشابه
Inverse Problems in Imaging Systems and the General Bayesian Inversion Frawework
In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملCapability of the Stochastic Seismic Inversion in Detecting the Thin Beds: a Case Study at One of the Persian Gulf Oilfields
The aim of seismic inversion is mapping all of the subsurface structures from seismic data. Due to the band-limited nature of the seismic data, it is difficult to find a unique solution for seismic inversion. Deterministic methods of seismic inversion are based on try and error techniques and provide a smooth map of elastic properties, while stochastic methods produce high-resolution maps of el...
متن کاملBayesian spatial modelling for high dimensional seismic inverse problems
We study the application of Bayesian spatial modelling to seismic tomography, a geophysical, high dimensional, linearized inverse problem that infers the three-dimensional structure of the Earth’s interior.We develop a spatial dependence model of seismic wave velocity variations in the Earth’s mantle based on a Gaussian Matérn field approximation. Using the theory of stochastic partial differen...
متن کاملA new stochastic 3D seismic inversion using direct sequential simulation and co-simulation in a genetic algorithm framework
Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the principle of cross-over genetic algorithms as the global optimization techniqu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 35 شماره
صفحات -
تاریخ انتشار 2013